La THRS et les approches multicapteurs Séminaire - La Télédétection à INRAe

M. Fauvel

12 Octobre 2022

Contexte

La fusion de donnée

Exemples

Références

Les 3 dimensions de la TLD

Une image numérique de télédétection est un échantillonage spatial, spectral et temporel d'un paysage.

Les 3 dimensions de la TLD

Une image numérique de télédétection est un échantillonage spatial, spectral et temporel d'un paysage¹.

Les 3 dimensions de la TLD

Une image numérique de télédétection est un échantillonage spatial, spectral et temporel d'un paysage.

La Très Haute Résolution Spatiale

Une classification (au 12 Octobre 2022!)

Résolution	Faible	Moyenne	Haute	Très haute
Taille Pixel	au delà 100m	entre 30 m et 100 m	entre 5 m et 30 m	inférieur à 5m (jusqu'au centimètre)
Capteurs	Satellitaire	Satellitaire	Satellitaire, aéroporté	Satellitaire, aéroporté, drône

Exemple de données THRS : Pleiades, Spot-6/7, Worldview-3, PlanetScope ...

Limite de la THRS

- Revisite temporelle (très) limitée
- Contenu spectral (très) limitée
- Coût & emprise

Les données complémentaires

Opportunités des approches multicapteurs

- Disponibilités des données multi-modale, multi-résolution
- > Aucune des sources ne possède **toutes** les résolutions nécessaires pour une application visée
- Augmentation des différentes résolutions à la carte !

Opportunités des approches multicapteurs

- Disponibilités des données multi-modale, multi-résolution
- > Aucune des sources ne possède toutes les résolutions nécessaires pour une application visée
- Augmentation des différentes résolutions à la carte !

Contexte

La fusion de donnée

Exemples

Références

Les principaux types de fusion

- 1. Fusion « pixel »
- 2. Fusion « feature »
- 3. Fusion « decision »

Image issue de [SZ16].

Pour la génération d'images mieux résolues 1/2

Quelques références : [Alp+15; Lon+15]. Fusion obtenu avec gdal_pansharpen.py

Pour la génération d'images mieux résolues 1/2

Quelques références : [Alp+15; Lon+15]. Fusion obtenu avec gdal_pansharpen.py

Pour la génération d'images mieux résolues 1/2

Quelques références : [Alp+15; Lon+15]. Fusion obtenu avec gdal_pansharpen.py

Pour la génération d'images mieux résolues 2/2

High Spatial Resolution and High Temporal Resolution

Image issue de [Gha+19].

Fusion : Approches par les modèles physiques

Définition d'un processus de « dégradation » [She+22] :

 $\mathbf{X}_{\text{basse}} = \mathbf{A} \mathbf{X}_{\text{haute}} + \mathbf{N}$

La fusion est le résultat de la résolution du problème inverse :

$$\hat{\mathbf{X}}_{\mathsf{haute}} = rg\min_{\mathbf{X}} \left\{ \|\mathbf{X}_{\mathsf{basse}} - \mathbf{A}\mathbf{X}\|_{p}^{p} + \lambda g(\mathbf{X})
ight\}$$

► Génère une nouvelle donnée *super résolue* ~→ Fusion Pixel/Feature

Fusion : Approches par les données

- ▶ Pas de modélisation physique mais des données **X**₁,..., **X**_s et une application « cible » **Y**, *i.e.*, classification, détection de changement etc ...
- Minimisation d'une fonction de coût liée à l'application « cible » :

$$\arg\min_{\theta} \left\{ \mathcal{L}\left(f_{\theta}\left(\mathbf{X}_{1},\ldots,\mathbf{X}_{s}\right),\mathbf{Y}\right) \right\}$$

▶ Résultat produit prenant en compte les *meilleurs* résolutions disponibles

Fusion : Approches par les données

- Pas de modélisation physique mais des données X_1, \ldots, X_s et une application « cible » Y, *i.e.*, classification, détection de changement etc ...
- Minimisation d'une fonction de coût liée à l'application « cible » :

$$\arg\min_{\theta} \left\{ \mathcal{L}\left(f_{\theta}\left(\mathbf{X}_{1},\ldots,\mathbf{X}_{s}\right),\mathbf{Y}\right) \right\}$$

Résultat produit prenant en compte les meilleurs résolutions disponibles

Fusion : Approches hybrides

- > Approches purement « data-driven » peuvent donner des résultats aberrant/in-inteprétable
- Ajout de contraintes « modèles » dans l'apprentissage :
 - Ajout de contraintes physiques dans les fonctions de coût : regularization
 - Remplacement des couche neuronales par des couches « modèles ».

$$\arg\min_{\theta,\phi}\left\{\mathcal{L}\left(f_{\theta,\phi}\left(\mathbf{X}_{1},\ldots,\mathbf{X}_{s}\right),\mathbf{Y}\right)+\lambda R(f)\right\}$$

En particulier :

- Utilisation des MTR PROSAIL, PROSPECT [Cam+18]
- Homogénéité spatiale : Régularisation TV

Contexte

La fusion de donnée

Exemples

Références

Fusion THRS, Multispectral et SITS [Gbo+21]

- Classification de l'occupation des sols
- Combinaison SPOT-6 et série temporelle Sentinel-1 & Sentinel-2
- « Amélioration sur classes caractérisées par des motifs spatiaux fins »

Fusion THRS, Multispectral et SITS [Gbo+21]

- Classification de l'occupation des sols
- Combinaison SPOT-6 et série temporelle Sentinel-1 & Sentinel-2
- « Amélioration sur classes caractérisées par des motifs spatiaux fins »

Fusion Ven μ s et Sentinel-2 [Mic+22]

- Quelques dates à 5m et une série temporelle S2
- Passage des S2 à la résolution Venµs
- Comparaison approches « model-based » et « data-driven »

Détection de changements multi-sources (dont une THRS!) [FDC20]

- Combinaison de données de modalités (Pan, MS, Hyper) différentes
- Détection de changements
- Approche « model based »

Change detection

Fusion THRS et nuages de points

Image issue de [Ull+20].

Contexte

La fusion de donnée

Exemples

Références

Références I

- ALPARONE, Luciano et al. Remote Sensing Image Fusion (1st ed.) CRC Press, 2015. DOI: 10.1201/b18189.
- BENEDETTI, Paola et al. « *M*³Fusion : A Deep Learning Architecture for Multiscale Multimodal Multitemporal Satellite Data Fusion ». In : IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 11.12 (2018), p. 4939-4949. DOI : 10.1109/JSTARS.2018.2876357.
- CAMPS-VALLS, Gustau et al. « Physics-aware Gaussian processes in remote sensing ». In : Applied Soft Computing 68 (2018), p. 69-82. ISSN : 1568-4946. DOI : https://doi.org/10.1016/j.asoc.2018.03.021. URL : https://www.sciencedirect.com/science/article/pii/S1568494618301431.
- FERRARIS, Vinicius, Nicolas DOBIGEON et Marie CHABERT. « Robust fusion algorithms for unsupervised change detection between multi-band optical images A comprehensive case study ». In : Information Fusion 64 (déc. 2020), p. 293-317. DOI : 10.1016/j.inffus.2020.08.008. URL : https://hal.archives-ouvertes.fr/hal-02949168.

GBODJO, Yawogan Jean Eudes et al. « Multisensor Land Cover Classification With Sparsely Annotated Data Based on Convolutional Neural Networks and Self-Distillation ». In : IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 14 (2021), p. 11485-11499. DOI: 10.1109/JSTARS.2021.3119191.

Références II

- GHAMISI, Pedram et al. « Multisource and Multitemporal Data Fusion in Remote Sensing : A Comprehensive Review of the State of the Art ». In : *IEEE Geoscience and Remote Sensing Magazine* 7.1 (2019), p. 6-39. DOI : 10.1109/MGRS.2018.2890023.
- **LONCAN, Laetitia et al. « Hyperspectral pansharpening : A review ».** In : *IEEE Geoscience and remote sensing magazine* 3.3 (2015), p. 27-46.
- MICHEL, Julien et al. « Sentinel-HR Phase O Report ». working paper or preprint. Avr. 2022. URL : https://hal.archives-ouvertes.fr/hal-03643411.
- SCHMITT, Michael et Xiao Xiang ZHU. « Data Fusion and Remote Sensing : An ever-growing relationship ». In : IEEE Geoscience and Remote Sensing Magazine 4.4 (2016), p. 6-23. DOI : 10.1109/MGRS.2016.2561021.
- **SHEN, Huanfeng et al. «** Coupling Model- and Data-Driven Methods for Remote Sensing Image Restoration and Fusion : Improving physical interpretability ». In : *IEEE Geoscience and Remote Sensing Magazine* 10.2 (2022), p. 231-249. DOI : 10.1109/MGRS.2021.3135954.
- ULLO, Silvia Liberata et al. « LiDAR-Based System and Optical VHR Data for Building Detection and Mapping ». In : Sensors 20.5 (2020). ISSN : 1424-8220. DOI : 10.3390/s20051285. URL : https://www.mdpi.com/1424-8220/20/5/1285.

Ce document est mis à disposition selon les termes de la licence Creative Commons « Attribution – Partage dans les mêmes conditions 4.0 International ».

